Mes anteior Día anterior Día siguiente Mes siguiente
Anual Mensual Semanal Hoy Buscar Ir al mes específico
Seminario Teoría de Números

Seminario Teoría de Números

 

Comparing residually reducible semisimple Galois representations

 

Ponente:  Ignasi Sánchez (Universitat de Barcelona)
Fecha:  jueves 30 de octubre de 2025 - 14:30
Lugar:  Aula 420, Módulo 17, Departamento de Matemáticas, UAM

 

Resumen:

Let $n geq 2$ and $p$ be a prime. Let $K$ be a number field and consider two Galois representations $rho_1, rho_2 : Gal(Kbar / K) to GL_n(Q_p)$ having residual image a $p$-group. Is there a list $T$ of primes of $K$ such that comparing traces at those primes is enough to ensure that the semisimplification of both $rho_1$ and $rho_2$ are conjugate one from another? Is the list $T$ finite? How does one compute such $T$? How small (in norm) can the primes in $T$ be?

Loïc Grenié gave answers to these questions in his work in 2007.  In this talk we present a fully automatic implementation of Grenié's work that returns the minimal list~$T$. Moreover, we use the method to prove the following result: Let~$K=Q(sqrt{-3})$ and let $rho_1, rho_2 : G_K to GL_2(Z_3)$ be continuous representations unramified outside~$3$ having the same determinant trivial modulo~$3$. Then~$rho_1$ and~$rho_2$ have isomorphic semisimplifications if and only if~$rho_1(Frob_t)$ and~$rho_2(Frob_t) have the same trace for every~$t$ in~$K$ above the primes ${2,7,19,73}$